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Numerical analysis of gas-particle two-phase flows 
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This paper is concerned with a numerical analysis of axisymmetric gas-particle two- 
phase flows. Underexpanded supersonic free-jet flows and supersonic flows around a 
truncated cylinder of gas-particle mixtures are solved numerically on the super 
computer Fujitsu VP-400. The gas phase is treated as a continuum medium, and the 
particle phase is treated partly as a discrete one. The particle cloud is divided into 
a large number of small clouds. In  each cloud, the particles are approximated to have 
the same velocity and temperature. The particle flow field is obtained by following 
these individual clouds separately in the whole computational domain. In estimating 
the momentum and heat transfer rates from the particle phase to the gas phase, the 
contributions from these clouds are averaged over some volume whose characteristic 
length is small compared with the characteristic length of the flow field but large 
compared with that of the clouds. The results so obtained reveal that the flow 
characteristics of the gas-particle mixtures are widely different from those of the 
dust-free gas a t  many points. 

1. Introduction 
In  many analyses of gas-particle two-phase flows, the two-fluid model has been 

used. In  this model, the gas and the particle phases are treated as separate media, 
and both phases exchange their momenta and energies through the particle surfaces 
by the gas viscosity and heat conduction (Carrier 1958 ; Marble 1963 ; Rudinger 1969 ; 
Schmitt-von Schubert 1969). 

When the Knudsen number K,, the ratio of the mean free path of the gas 
molecule h to the characteristic length of the flow field L, is sufficiently small, it is 
commonly accepted that the gas phase can be treated as a continuum medium. The 
particle phase can be treated as continuum medium when the mean particle spacing 
1, is sufficiently small compared with the characteristic length L. In  many practical 
situations where the conditions K ,  @ 1 and &/,5 + 1 are satisfied, both the gas and 
the particle phases can be treated as continuum media. 

Recently, Crowe (1982) proposed a new criterion for diluteness of gas-particle 
suspensions. He categorized the flow of a gas-particle mixture according to the 
significance of particle-particle collisions on particle motion. The dilute and dense 
categories for a gas-particle flow are directly analogous to the free-molecule and 
continuum flow regimes of a single (gas)-phase fluid. Here, the parameter 
corresponding to the Knudsen number is the Stokes number based on the distance 
a particle travels between collisions. Consider a particle which has a velocity AuP 
relative to the gas. Then the particle will travel a distance of about before it 
stops in the coordinate system moving with the gas, where is the aerodynamic 
relaxation time of the particle velocity. If this distance is small compared with the 
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distance hp travelled between particle-particle collisions in the same coordinate 
system, then one can regard the particle cloud as dilute. 

Crowe’s criterion is, however, not always practical and appropriate in general. If 
we consider spherical particles of uniform size with constant material density, it will 
be almost impossible for nearby particles to  attain velocities appreciably different 
from each other in the flow field under the condition Tp/L -4 1 unless external forces 
are exerted on the particles. This means that under this condition particle-particlc 
collisions will not occur or will be negligible for the particle-phase flow in many gas- 
particle two-phase flows. As was discussed by Crowe (1982), and will also be shown 
in the present study, there are some situations where intersections of particle clouds 
can occur in the flow field. In  such cases, the significance of particle-particle collisions 
for the flow should first be measured using the ratio xp/L. It is important to point 
out that the particles may be treated as a continuum even in the limit of infinite 
dilution (Marble 1970). 

Here we shall discuss a more precise criterion for the diluteness of gas-particle 
suspensions. In  general, the material density pmp of a normal solid or liquid particle 
is larger by a magnitude of lo3 than that of a gas p. The volume fraction ep is given 
by vp[pmp, where v is the mass loadin ratio of the particles. If the particle mean free 
path A, is then h,/L = (&/L)/e;. Therefore, if i,/L = O ( E ~ ) ,  then h,/L = 0 ( 1 )  
and the gas-particle mixture can be treated as dilute. In other words, if v = O ( l ) ,  
l,/L = 0(10-2) is a sufficient condition for the particle phase to be dilute. In exact 
terms, the particle mean free path h, depends on the relative velocity of crossing 
particles. It will, however, be reasonable to  assume that hp = O(Tp/ei), and then the 
above discussion will generally be valid. 

In  the present paper, we consider a gas-particle mixture under the conditions that 
K ,  + 1, Tp/L -4 1 (or more precisely TP/L = O(ei)) and v = O ( l ) ,  and the particles are 
assumed to be spheres of uniform size and material. Based on the above discussions, 
the present gas-particle mixture is obviously a ‘dilute’ one. 

In  continuum gas dynamics, the basic thermodynamic properties of the gas are the 
pressure, the density and the temperature. In  a dilute particle phase, there is no 
particle pressure. Information transfer in a gas phase is through pressure waves 
which move in all directions, while information travels along particle trajectories in 
a particle phase. This is the most significant difference between the two phases. Since 
a solid or a liquid particle has a very much larger mass than a gas molecule, the 
particle streamlines do not always coincide with the gas streamlines even in a steady 
flow (Ishii & Umeda 1987). Moreover, it often happens that the particle cloud breaks 
up into small subclouds and also particle-free regions appear in the flow field. 

When a flow is highly unsteady, disintegration of a particle cloud usually produces 
some small subclouds. These subclouds can in turn coalesce or collide with each other 
in some different flow regions. It should be stressed, however, that the collision 
between small particle clouds does not always result in the direct collision between 
particles in the clouds. As was discussed previously, except in some extreme 
situations particle-particle collisions can be neglected even when the collision 
between small particle clouds occurs, if the particle mass loading ratio v is O( 1) and 
hence the particle volume fraction eP is negligibly small. 

Mathematically, the collision between particle clouds leads to multivalued fields of 
the particle phase a t  the colliding points in the flow region. In  the present analysis, 
therefore, the particle phase is treated partly as a discrete one. The whole particle 
cloud is divided into a large number of small clouds. In  each cloud, it is assumed that 
the particles have the same velocity and temperature. The particle flow field is solved 
by following the behaviour of all the clouds in the flow field. I n  estimating the 
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momentum and the energy transfer rates from the particle phase to  the gas phase, 
the contributions from the clouds are averaged over some appropriate volume. The 
cross-sections of the clouds and the averaging volume are chosen so that the 
conditions $ 4 ASp Sp 4 Lz are satisfied, where ASp and Sp are the cross-sectional 
areas of the clouds and the averaging volume, respectively. 

First, one-phase flows of sonic jets and those around a truncated cylinder are 
described. Second, the flow behaviours of the particles in the gas flows are 
investigated for the limiting case where v + O .  Finally, the two-phase results are 
presented for v = 0.3 and detailed comparison between the one-phase and two-phase 
results will be made to clarify the effects of the presence of particles on the flow 
fields.? The calculations have been performed on Fujitsu VP-400 super computer a t  
the Data Processing Center of Kyoto University. The theoretical maximum speed of 
VP-400 is 1.7 GFLOPS (billion floating-point operations per second) and its main 
memory is 256 MB (megabytes) in capacity. 

2. Governing equations 
Although some of the important assumptions introduced in the present analysis 

have been discussed in the previous section, here we summarize them with the other 
important assumptions that will be used here (Ishii & Matsuhisa 1983). 

(i) No phase change takes place. 
(ii) The gas is inviscid except for its interaction with the particles. 
(iii) The gas is a continuum perfect gas with constant composition and constant 

(iv) The volume occupied by the particles is negligible and the mean particle 

(v) The thermal and Brownian motion of the particles is negligible. 
(vi) The particles do not interact with each other. 
(vii) The particles are solid or liquid spheres with a uniform diameter and a 

(viii) The particles have a constant specific heat and uniform internal temperature. 
Here we introduce non-dimensional quantities : 

specific heats. 

spacing is much smaller than the smallest scale of flow structure. 

constant material density. 

and also for later convenience 

(4) 
c c 
--=, e = s ,  

= c,, C m  
t Copies of more detailed numerical results may be obtained on request from either the authors 

16.2 or the Editor. 
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where t, x and y are the time, axial distance and radial distance, respectively ; u, v, 
p ,  T and c are the axial velocity, radial velocity, pressure, temperature and speed of 
sound of the gas, respectively. The subscripts p and r denote particles and reference 
conditions, respectively, and overbars denote the dimensional quantities. The 
location of a particle a t  a time t is denoted by (xp,yp). The quantities Cv,, and C,, 
are the specific heats at constant volume, and pressure of the gas, respectively, Cpp  
is the specific heat of the particle material, y the ratio of specific heats of the gas, 
C, the particle drag coefficient, Nu the Nusselt number and pmP the material density 
of the particles. The subscript S denotes the Stokes flow. The non-dimensional 
parameter r, is defined as a ratio of the aerodynamic response time of a particle 
assuming the Stokes drag law, T A ,  to a characteristic time of the flow field, TF. These 
are defined as 

where Fp is the particle radius and ,ii is the gas viscosity. The parametersf, and 9, are 
the modifying factors of the drag coefficient and the Nusselt number for the Stokes 
flow, respectively. 

In  the present analysis, the gas viscosity p is given by 

where 6 is a constant. The particle drag coefficient C, and the Nusselt number N ,  
used here are those given by Henderson (1976) and Carlson & Hoglund (1973). In  this 
drag coefficient, virtual mass force, pressure gradient, force, Basset force and side force 
(Saffman 1965) are all neglected. As was reported by Maxey & Riley (1983), the 
neglect of these forces is justified, because &( = pmP/pr) is assumed to  be in the range 
103-104 for a typical gas-solid flow system in this study. The effects of the volume 
fraction on the particle drag are also neglected (Tam 1969) on the basis of assumption 
(iv). The force exerted on a particle includes rarefaction, inertial and compressibility 
effects and also that of a temperature difference between the particle and the gas. The 
flow regimes to which the present drag force is applicable are continuum, slip, 
transition and free-molecular flows at particle Mach numbers up to  6, and at  particle 
Reynolds number up to laminar-turbulent transition. 

2.1, Particle phase 

We consider the motion of a particle. The motion is controlled by Newton's law. 
Denoting the particle location by (x,(t), yp(t)), we have 

where 

Here the particles are labelled by subscripts i (i = 1,2,3,  ... ). The last is the 
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FIGURE 1. A cloud of particles in the physical space. Since the flow is axisymmetric, the particle 
cloud in the physical space is a ring cloud. The number of particles contained in the k-cloud is given 
by 2 H g p k N Q k .  

FIGURE 1. A cloud of particles in the physical space. Since the flow is axisymmetric, the particle 
cloud in the physical space is a ring cloud. The number of particles contained in the k-cloud is given 
by 2 H g p k N Q k .  

relaxation equation of the particle temperature Tp.  The parameters A ,  and B, are 
defined by 

(9) 

where P,  is the Prandtl number of the gas. These equations are applicable when the 
particle velocity is a non-fluctuating function of time and position in the gas (Marble 
1970). 

In  principle, the particle flow field is solved by following all the particles using the 
above equations. In  practice, however, there are too many particles in a flow field 
to do this, so instead we consider a large but tractable number of small clouds, 
which are axially symmetric. Their cross-sections are denoted by ASpk( = ASpk/@).  
The centre of upk is designated by (Xpk(t), Y p k ( t ) )  (k = 1,2,3, ...). Aspk  must be 
taken to be so small that the particles contained in a cloud can be approximated to 
have the same velocity and temperature. So ASpk must satisfy ASpk < (AL)2, where 
hL ( = AL-/E) is the smallest scale of the flow structure ; namely there should be a 
sufficient number of clouds contained in (AL)*. When a cloud is injected into a 
flow field a t  a time t* a t  a point (sPk(t*),  yPk(t*)),  the positions of all the particles 
in the cloud at an arbitrary time t are represented by the point (spk(t),Ypk(t)). 
Denoting the number of particles contained in the k-cloud per unit depth by 
Npk ( =RPk/%,,.E2), where n, is the number density of particles, one obtains a 
conservation equation of the particles in this cloud : 

f 
r, 3 P , t q '  

A , = > ,  B = 2gP 

2'Ypk Npk = 2nY,*k N:k 

or N p k  = (Y:k/Yp&) N:ky (10) 

where the asterisk denotes the conditions of particles in the k-cloud a t  the injected 
point. A brief illustrative sketch of the cloud in the physical space is given in figure 
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1. It must be borne in mind that the number density of the particles in each cloud 
cannot be defined, because the cross-sectional area ASpk is not known at  time 
t (> t * ) .  The particle number density np in the flow field is, however, defined by 
space-averaging as will be shown later. In  the present analysis, the number density 
R , ~  a t  the reference position will be specified as a boundary condition. 

In  this approximation, the particle phase is considered to be an ensemble of a large 
number of small clouds. Therefore, we can solve the particle-phase flow by following 
the behaviour not of all the particles but of all the clouds injected into the flow field. 

(11) 
Obviously, 

must be satisfied, where the left-hand side is the sum of the number of  particles 
contained in all the clouds and the right-hand side is the total number of particles 
that are actually present a t  that time in the flow field. 

c 2 7 c y p k N p k  = Np' 

2.2. Gas phase 
In  order to evaluate the gas-particle interaction terms, let us define some space- 

(12) 
averaged quantities by 

Fp = 'r - c N p k f p k y  (:I 
where f p k  denotes a contribution of a representative particle of  the k-cloud. Here the 
summation is taken over the clouds whose centres (x,,, y p k )  are in the averaging 
domain Sp( = s,/e2). I f f , ,  = 1 is substituted into (12), F, gives the particle density 
p, ( = 8$pmp %,/pr) a t  the centre of the domain S,, and if the drag force on a particle 
is used for f p k  in this equation, -Fp can be taken as the force exerted on a unit 
volume of the gas a t  the centre of S,. 

With the aforementioned approximations for the particle phase, the governing 
equations for the gas phase are given by 

where 

aU aF aG 
-+ -+-+H+H,  = O ,  
at ax ay 
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This system is supplemented by 

48 1 

3. Numerical scheme 
First we consider the equations for the gas phase interacting with the particle 

phase. Let L,(At) and L,(At) designate difference operators yielding solutions to the 
one-dimensional equations 

aU aF 
-+ -+Hx+Hp,=O,  
at ax 

aU aG -+- + H, + H,, = 0, 
at dy 

where 

and H = Hx+ H,, H,  = H,,, -+ Hpy,  (21) 

is satisfied 

applying L, and L,, to second-order accuracy, 
The solution for the gas-phase flow a t  time t + A t  is obtained by successively 

L,($At) L,(At)L,($At) U",  (22) Untl = 

where n denotes the time step. In this solution procedure, the particle flow field is 
fixed to be U:+i, which is the particle-phase solution a t  time t + i A t ,  defined as 

The solution for the particle phase is obtained by applying a simple pre- 
dictor-corrector algorithm (Zucrow & Hoffman 1977). This procedure is written as 
follows : 

where L,, denotes the difference operator of (7). I n  this procedure, the gas-phase flow 
field is fixed to be Unit, which is given by $( U"+' + U"). 

First, U i  is obtained from given initial values of UO and Up. Next, the solution for 
the gas phase U1 is obtained by applying (22) with UO and Ug = a(q+ q). With 

2( 1 u; + u;"). 

lJ:+' = L,,(At) U:, (23) 
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Grid point j; Square AX = Ay mesh 

+ 
0 A Axis B x  

FIGURE 2. Geometry of calculation domain. 

0 = t( UO + ul) and 3, U i  is once again calculated from (23). Finally, U 1  is obtained 
from (22 )  with V‘ and a new @, = (iU;+ Uk) .  Thus the unit process is composed of 
these four steps. The procedure is repeated until the solution U” as well as U; at  a 
specified time t is obtained. In the present analysis, a piecewise-linear interpolation 
method (PLM) (Collella & Glaz 1983) is applied to (18) (see the Appendix). Then the 
time interval At is controlled by the Courant-Friedrichs-Lewy condition. 

Theoretically, we have two kinds of characteristic (non-dimensional) times for the 
particle phase, t,, = 1/A, and t , ,  = l/B,. Strictly speaking, the time interval At 
must be controlled by these characteristic times as well as the CFL condition. In  the 
present calculations, it was confirmed that the time intervals At determined by the 
CFL condition were always much smaller than both t , ,  and t,,. Then in each unit 
process, the time interval At was determined by the CFL condition for the gas-phase 
flow and also used in the particle-phase solution. 

In the numerical analysis, the smallest scale of the flow field AL is the mesh size. 
This suggests that the cross-sectional area AS, of the clouds should be chosen much 
smaller than the mesh area (hL)2. A time-dependent technique is applied to the 
present analysis. Then, initial and boundary conditions were specified. From a 
numerical point of view, the initial conditions are not so important, because the 
present scheme is robust. The boundary conditions, however, are very critical. As 
usual, the computational domain is finite, and therefore it is necessary to introduce 
some numerical boundaries, which will be not physical but artificial ones. The 
boundary conditions imposed on these numerical boundaries generally affect the 
numerical results. There are some cases where ill-imposed boundary conditions give 
unjustifiable or inaccurate results. 

In  view of this, very careful and extensive numerical experiments have been 
carried out to check and find the best boundary conditions. We concluded from these 
numerical experiments that the ‘ambient gas condition ’ is the best one that can be 
applied on the numerical boundaries, a t  least for the present calculations (Matsuda 
et al. 1987). 

Since the cell method is used and the gas variables are defined a t  the cell centre, 
as is shown in figure 2 ,  we assume fictitious cells outside the boundaries. The fluxes 
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Gas (air) Particles (A1,O.J 

pmp = 4.0 x lo3 kg/m3 
epp = 1686 J/kg K 

y =  1.4 
c,, = 1005 J/kg K 
,a = 1.79 x 

(for T = 288 K )  
6 = 0.5 
P,  = 0.75 

TABLE 1 .  Physical constants of gas and particles 

kg/m s 

just on the boundaries are computed by solving the Riemann problem between the 
state in the fictitious cell and that in the cell just inside the boundary. In these 
fictitious cells, physical quantities are specified as follows: for the ambient gas 
condition, we assume that the fictitious cells are filled with an ambient gas in a fixed 
state. 

The computational domain considered here is a cylindrical one, of cross-section as 
shown in figure 2. The boundaries, on which appropriate boundary conditions are 
imposed, are the axis A B ,  the downstream boundary BC, the side CD, the upstream 
boundary DE, the nozzle or the body wall EF and the nozzle exit plane or the body 
surface AF.  On the boundaries AB and EF,  the symmetric condition is applied and 
on the boundaries BC, CD and DE, the ambient gas condition is given. For jet flows, 
a uniform sonic jet condition is applied at  the nozzle exit plane AF.  For a flow around 
a truncated cylinder, the symmetric condition is applied on the body surface AF.  

4. Numerical results 
I n  the present calculations, equal and uniform meshes Ax and Ay were employed. 

The mesh size is shown on each figure. Physical constants of the gas and the particlcs 
used here are listed in table 1 .  

4.1. One-phase flow 

Before proceeding to two-phase flow problems, the corresponding one-phase flows 
are investigated. These results are compared to the previous experimental and 
theoretical results, and thereby the reliability of the present scheme is checked. 
These results will also be compared to the two-phase results to investigate the 
effects of the presence of particles on the flow field. Schematic views of the flow fields 
are shown in figure 3. The directions of the jet and ambient gas flows are shown by 
arrows. In  these figures, the subscripts j and co denote t,he values at the nozzle exit 
and in the ambient, respectively, and M is the Mach number. The nozzle exit 
conditions are obtained through an isentropic relationship from the stagnation 
conditions, which are denoted by the subscript 0. In  flows (a )  and ( b ) ,  the reference 
length L is taken to be the nozzle radius a t  the exit, and the reservoir conditions are 
taken as the reference conditions. In flow (c), the length L is taken to be the body 
radius and the free-stream conditions are taken as the reference conditions. 

In the calculations of sonic jets in figure 3 (a ,  b ) ,  the whole computational domain 
was initially filled with the ambient gas and the jet was impulsively exhausted from 
the nozzle exit at t = 0. For the flow around a truncated cylinder in figure 3 ( c ) ,  a 
supersonic uniform flow impinged on the cylinder at t = 0. 

Contours of constant density, pressure and Mach number for an underexpanded 
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Barrel shock 
Reflected shock 

\ 
Truncated 

cylinder , \ 

3 
D k  

A n 

/ I  
Expansion’ I 

Wave / 

Bow shock 

c- 
M ,  

/ ’/ 
FIGURE 3. Schematic views of flow fields: (a) sonic jet expanded into a stagnant gas; 

(6) opposing jet; (c) supersonic flow around a truncated cylinder. 

free jet are shown in figure 4, where p0/pm = 20 and F denotes the CFL number. The 
time history of the density distribution along the symmetric axis is shown in figure 
5 for 3000 5 n 5 6000. Here the transient results for n < 3000 have been omitted. 
Figure 5 demonstrates that an almost steady flow field is restricted to only upstream 
of the Mach disk for large n. In the region downstream of the Mach disk, the density 
field is slightly fluctuating or oscillatory even for large n. This situation will not 
always be an unrealistic numerical phenomenon. At a high Reynolds number, the jet 
boundary is very unstable and then the jet usually experiences a self-sustained 
oscillation due to a feedback mechanism in connection with the radiation of screech 
tone (Powell 1953; Umeda, Maeda & Ishii 1987). 

In figure 6 ( a ) ,  a schlieren photograph of a uniform sonic jet is shown for the 
pressure ratio po/pm = 5.84. The Reynolds number based on the nozzle diameter is 
about lo6. This photograph was taken with an exposure time of s. The jet appears 
to be steady and several cell structures can clearly be recognized. Figure 6 (b ,  c) shows 
shadowgraphs of the jet in figure 6 ( a ) .  These were taken with an exposure time of 
1.1  ps and can be considered as instantaneous photographs. We can observe Mach 
disks, barrel shocks and slip lines on the photographs. An illustrative sketch of the 
jet in figure 6 (c) is shown in figure 6 ( d ) .  In  figure 6 (b ,  c) we can distinguish two types 
of fluctuations : one very small scale and the other of large scale. The former comes 
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FIGURE 4. Sonic jet expanded into a stagnant gas, f io/p,  = 20, M, = 1 ,  M ,  = 0, Ax = Ay = 0.1. 
(u, b, c )  Constant density, pressure and Mach number contours respectively of dust-free jet, 3’ = 1 .O, 
n = 6000. (d, e,f) Constant density, pressure and Mach number contours respectively of dusty jet, 
po = 5 atm, To = Tm = 290 K, & =  5 cm, vj = 0.3, F~ = 1.0 pm, K = 50, F = 0.8, n = 5000(+6000). 
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FIGURE 5. Time history of density profile along the  jet axis of the dust-free jet shown in figure 4. 
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FIQURE 6. Instabilities of dust-free jet for &/pm = 5.84. 

487 
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from the turbulent mixing while the latter may be attributed t o  the self-sustained 
oscillation of the jet due to the instabilities of its boundaries and slip lines. The 
second Mach disk observed in figure 6 ( b )  does not exist in figure 6(c) .  Obviously, the 
flow field surrounded by the first Mach disk and the slip lines oscillates with time. 
Figures 6 ( 6 )  and 6 ( c )  are only two examples among many instantaneous photographs, 
taken in our laboratories. These photographs suggest that temporal variation of the 
shape and size of the second Mach disk and also weak asymmetric modes of 
oscillation take place in the jet. 

Experimentally, it was also confirmed that the asymmetric modes of jet oscillation 
are dominant in the pressure ratio range of 3 to 4 while symmetric modes tend to 
become dominant with increasing pressure ratio for p,,/p, > 4. Unfortunately, a 
pressure ratio of 6 is the highest attainable in our high-pressure wind tunnel. 
However, using a low-pressure wind tunnel, an experiment for po/pw = 19.4 had 
previously been ca,rried out in our laboratory (Kobayashi, Nakagawa & Nishida 
1984) and a comparison with the present result is contained in figure 7. Agreemcnt 
between them is fairly satisfactory. However, in the low-pressure (density) 
experiment, it  was impossible to  take the instantaneous photographs by usual 
optical methods, and so the detailed characteristics of the jet oscillation remain 
unknown for p,,/pw = 20 a t  least for the present. 

In spite of this, the present and the previous experiments strongly suggest that the 
oscillatory character of the flow field is ubiquitous in free jets and the numerical 
result has simulated this phenomenon. However, as shown in figure 5 ,  the flow field 
upstream of the Mach disk is relatively stable and the characteristics of the first 
shock cell are unchanged with time. This situation is also quite consistent with the 
experiments. 

Another important point is that the effects of turbulent mixing on the (first few) 
shock-cell structures and then on the jet oscillation are not important (Romeo & 
Sterrett 1963 ; Powell 1953). An analysis using the Euler equation will, thereforc, be 
appropriate for the present study. 

Although it is important to compare the jet oscillation with previous experimental 
and theoretical results in more detail, there are no available experimental data nor 
theoretical results for free jets at high pressure ratios. From a theoretical point of 
view, the jet flow field a t  a high pressure ratio is highly nonlinear, which prevents us 
from applying the previous linear analyses to the present study (Tam 1972). 

The most important feature of free-jet flow for a very large pressure ratio is that 
the flow region downstream of the Mach disk is divided into two subregions by the 
strong slip lines: one is the core region, where the flow is slightly periodic, and the 
other is the outer region surrounded by the jet boundary and the slip line, where the 
flow is spatially highly periodic, perhaps because the pressure waves in the outer 
region are effectively reflected by the jet boundary and the slip line (see figure 4a-c). 

The location and the width of the Mach disk and the first shock-cell length 
obtained in the present calculations are compared with the experiments of Love et al. 
(1959) in figure 7 ( a ) .  There is excellent agreement between the present and the 
experimental results. 

Contours of constant density, pressure and Mach number for an opposing jet are 
shown in figure 8 for po/pm = 20 and M ,  = 2. The time history of the density profile 
along the jet axis for the opposing jet is shown in figure 9 which demonstrates a 
similar behaviour to that in figure 5 .  However, the flow behaviour in the region 
downstream of the Mach disk is very different. The locations of the Mach disk, the 
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(4 
Measured (Love et al. 1959) ' Calculated 

4 r  

P , l P m  

(b) 

Measured (Kobayashi et al. 1984) 
(p.lPm = 19.4) 

- Calculated 

x, measured from nozzle exit 

FIGURE 7 .  Comparison between the present dust-free results and experiments : (a) 
characteristics of the first shock-cell; (b) density distribution along the jet axis. 

contact surface and the bow shock are relatively very oscillatory with time compared 
to those in the free jet even for large n. 

Previous experiments have shown that a very strong and large instability can 
occur in some situations for an opposing jet (Romeo & Sterrett 1963). In such a case, 
the pressure fluctuation in an almost dead-air region surrounding the jet boundary 
near the nozzle exit plays an important role. The pressure variation with time 
sometimes results in a change of shock-cell pattern or the basic flow structure of the 
jet. This change in turn produces a large scale of displacement of the free-stream bow 
shock. 

For the flow conditions considered here, however, the present jet is categorized as 
a very steady one on the opposing jets (Finley 1966). Denoting the Pitot pressure of 
the free stream by pk,,, the position of the jet shock L, divided by the nozzle diameter 
D( = 2) can be correlated as a function of po/pko for all free-stream Mach numbers 
M,. In figure 10, the numerical results for L J D  are compared with the experiments 
of Romeo & Sterrett (1965). Since the present results are oscillatory with time, the 
data for the position of the jet shock show some scatter. In  spite of this, agreement 
between the numerical and the experimental results is very good. 

In the present results, although the contact surface fluctuates with time rather 
strongly, the bow shock does not appreciably change its shape and size. It 
experiences only parallel displacement along the jet axis. Then a time-averaged 
radius of the contact surface R, was determined from the radius of the bow shock R, 
through the approximation R, x R,( 1 +AIR,) ,  where d is a shock stand-off distance 
for a supersonic flow around a solid sphere with radius R,. Experimental results for 
AIR, (Van Dyke 1958) were used to determine R, in conjunction with the numerical 
results for R,. These are plotted in figure 10 ( b )  against p,,/p&. The present results are 



X
 

F
IG

U
R

E
 

8.
 O

pp
os

in
g 

je
t,

 p
,/

p
, 

=
 2

0,
 M

, =
 1

, M
, 

=
 2

, A
x 
=

 A
y 

=
 0

.1
. (

u
,
 b,
 c)

 C
on

st
an

t 
de

ns
it

y,
 p

re
ss

ur
e 

an
d 

M
ac

h 
nu

m
be

r 
co

nt
ou

rs
 r

es
pe

ct
iv

el
y 

of
 d

us
t-

fr
ee

 je
t,

 F
 =

 1
.0

. T
L 
=

 9
00
0.
 (d

, e
,A

 C
on

st
an

t 
de

ns
it

y,
 p

re
ss

ur
e 

an
d 

M
ac

h 
nu

m
be

r 
co

nt
ou

rs
 

re
sp

ec
ti

ve
ly

 o
f 

d
u

st
y

 j
et

, $
7, 

=
 5

 a
tm

, 
T

o =
 T

, 
=

 2
90

 K
, L

 =
 5

 e
m

, v
, =

 0
.3

, r
, =

 1
 p

m
, K

 =
 5

0,
 F

 =
 0

.8
, n
, 
=

 5
00

0(
 +

9
0

0
0

).
 

2:
 

R
 

+
. 

X
 

X
 



Numerical analysis of gas-particle two-phase flows 

Contact surface 

n = 802&9000 

n 

0.6 

P 

0.4 

0.2 

0 2 4 6 8 10 12 

FIGURE 9. Time history of density profile along the jet axis of the 
dust-free opposing jet shown in figure 8. 
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FIGURE 10. Comparison between the present results and experiments for the dust-free opposing 
jet shown in figure 8 : (a) Jet-shock position ; (b) time-averaged radius of contact surface. 

few tens percent larger than the experiments. This might come from the fact 
the present Mach number M ,  = 2 is not large enough to use the approximation 
R, z R, + A and also to expect a sufficient correlation between R, and the pressure 
ratio p,,/27/,,,. 

Experimentally, it has been oserved that the round opposing jet is very sensitive 
to transverse fluctuations (Romeo & Sterrett 1963). In  figure 8 ( a ) ,  one can see a 
protrusion of the contact surface near the jet axis. The shape and the size of this 
protrusion change with time. This phenomenon can be attributed to the Rayleigh- 
Taylor and/or Kelvin-Helmholtz instabilities (stagnation instability). Numerically, 
the axisymmetric condition is responsible for this large instability. Although 
the instability of the contact surface was clearly observed even in very stable 
opposing jets, such a large instability of the contact surface has not been confirmed 
experimentally. This might be explained by the aforementioned experimental 
observation that the opposing jet is very sensitive to transverse fluctuations. 
Hence, i t  could be said that the axially symmetric calculation may not simulate 
well some instabilities in the opposing jet. However, it must be emphasizcd that the 
instability of the contact surface, for example, in an astrophysical jet (Norman 
et al. 1982), is very sensitive to the density ratio p j /p , ,  and so the present result 
should be compared with experiment for both the same density and pressure ratios. 
At least qualitatively, the present numerical results are quite consistent with those 
of Norman et al. (1982) and those of Kossel & Muller (1988). 

Contours of constant density, pressure and Mach number for a supersonic flow 
around a truncated cylinder are shown in figure 11. The space-time diagram of the 
density distribution along the axis is shown in figure 12 (a ) .  This clearly demonstrates 
a time-convergence of the flow field. At first, the shock wave impinging on the 
cylinder surface is reflected and the reflected wave propagates upstream. This shock 
wave travels some distance very fast and then experiences rapid deceleration to form 
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r- Body surface r- Body surface 

X X 

FIGURE 12. Space-time diagram of density distribution along the axis of the supersonic flow around 
a truncated cylinder, M ,  = 2.0, Ax = Ay = 0.05. (a )  Dust-free for 1 5 n 5 4000, F = 1.0; ( b )  dusty 
for 4001 5 n 5 8000, p, = 0.5 atm, T, = 290 K, L = 5 cm, F~ = 2 pm, Y, = 0.3, K = 250, F = 0.8. 
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FIGURE 13. Comparison of the present dust-free results with experiments and theories. (a )  Shock 
and stagnation conditions :-, analytical (exact) solutions ; ----, experiments (Kendall 1959), 0, 
present results. (b )  Pressure distribution along the body surface: 0, a, = 4.76 (Kendall 1959); 
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a stationary bow shock. The rapid deceleration in turn produces pressure waves 
which propagate downstream. The high-temperature gas that was produced by the 
first reflection of the incident shock remains for a very long time in front of the body 
surface. The final steady state is obtained after this hot gas cloud has been 
completely removed from the flow field. 

In  figure 13, the numerical results are compared with experiments and theories 
(Kendall1959; Chuskin 1962). Here A is the shock stand-off distance, p,, and pas  are 
the pressure and the density of the gas just behind the bow shock on the axis, and 
p i o  and pL0 are the pressure and the density a t  the stagnation point on the body 
surface, respectively. Exact values of these quantities were obtained analytically. 
Profiles of the pressure distributions along the body surface are shown in figure 13 ( b ) ,  
showing excellent agreement between the present results and the experimental and 
theoretical ones. 

4.2. Particle behaviour in a gas flow 
Practically and theoretically, i t  is important to investigate the motion of particles in 
gas flows (Healy 1970; Michael & Norey 1969; Morsi & Alexander 1969; Probstein 
& Fassio 1970). In this section, we investigate the behaviour of particles in the flows 
obtained in the previous section. In  the jet flows, the particles are injected into the 
gas jet a t  fixed points on the nozzle exit plane a t  each time step after the final step 
in the one-phase solutions (see figures 4 and 8) .  I n  the flow around a truncated 
cylinder, the particles are injected into the flow field in a similar manner on a plane 
perpendicular to the symmetric axis ahead of the bow shock. In  every case, the 
particles are assumed to have the same velocities and temperatures as those of the 
gas a t  the injected positions. 

Since the gas flows are not steady, the gas and the particle flows are solved 
simultaneously even in the limiting case where v+0. Only the flow around a 
truncated cylinder is steady for large n and then the particle motion is solved for a 
fixed flow field of the gas. 

Streaklines of the particles in a sonic jet expanded into a stagnant ambient gas are 
shown in figure 14 for the particle radii Fp = 1.0, 2.0 and 5.0 pm, respectively, where 
arrows denote the velocity vectors of the particles. The particles are injected a t  
points yzk = O. l (k -0 .5 )  (k = 1-10) on the nozzle exit plane. For rp = 1.0 pm, all the 
particles flow through the gas inside the jet boundary. As shown in figure 4, the gas 
flow field is divided into several subregions by the jet boundary, shock waves and slip 
lines. The flow behind the Mach disk and surrounded by the strong slip lines is 
subsonic, so a subsonic ‘inverse ’ jet is submerged in the faster annular supersonic jet. 
In  this region, the gas flow fluctuates and the small particles ( F ~  = 1.0 pm) follow the 
fluctuation. The fluctuation of the particle motion becomes smaller for the larger 
particles ( F ~  = 2.0 and 5.0 pm). It is interesting that an appreciable concentration of 
particles occurs near the gas jet boundary for rP = 1.0 pm. The particles along the 
outer streaklines penetrate through the gas jet boundary into the ambient region for 
rP = 2.0 and 5.0 pm. The maximum width of the dusty region becomes larger with 
increasing radius. Theoretically, however, for fixed gas jet conditions, the width of 
the dusty region will decrease again for sufficiently large particles. Then the 
spreading region of the particles becomes maximum at a certain size of particle. 

In order to investigate the particle behaviour more systematically, i t  is convenient 
to  introduce non-dimensional parameters such as 4, and Re, where Re is the 
Reynolds number of the gas-phase flow (Chung & Troutt 1988). Although this 
Reynolds number is not primarily important for the particle-phase flow, it is 
important to justify the use of the Euler equations for the gas-phase flow. In the 
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FIGURE 14. Velocity vectors of particles along streaklines in a jet expanded into a stagnant gas, 
p ,  = 5 atm, p,/pm = 20, To = T, = 290 K, M j  = 1, M ,  = 0, = 5 cm, Ax = Ay = 0.1, F = 0.8, 
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( b )  Fp = 2.0 pm, Y = 0.69; (c )  Fp = 1.0 pm, Y = 0.17. 
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present study, Re is of O( lo6) based on the nozzle diameter, which justifies the use of 
the Euler equations for the gas-phase analysis. 

The particle behaviour in a gas flow can be characterized by the Stokes number Y 
defined by Fmp(2Fp)2/18 pfp]/(L/U), where 0 is an appropriate reference velocity. 
For a sonic jet, this can be rescaled without loss of generality as 

pmp ( 2Tp)2 5 
Y =  

lSpjfpj 2L’ (24) 

where 2E is the nozzle diameter. Since oj = % and fpj = 1 in the present analysis, we 
have 

This was used to investigate the particle dispersion in incompressible subsonic jets by 
Chung & Troutt (1988). In  their analysis, the nozzle diameter D = 2E is taken as the 
scaling length characterizing the large turbulent structures. In  the present study, we 
can take the nozzle diameter as the scaling length of the shock-cell structure. By 
doing so, we shall be able to  expect some qualitative and quantitative analogies 
between the present results and those obtained by them. 

For Y % 1,  the particles wiH not have sufficient time to respond to the gas flow and 
will move in a nearly rectilinear path. In  this case the flow spreading rate will be 
larger than the lateral dispersion rate of the particles. For Y + 1, the particles have 
sufficient time to respond to the spreading velocity field of the gas jet and should 
disperse laterally with the spreading rate of the gas jet. On the other hand, for 
Y = 0(1) the gas jet will be able to capture the particles and fling them beyond the 
gas jet boundary. In figure 14, the value of this parameter is shown in each case. 
The present results are clearly quite consistent with the previous discussion. 

In an underexpanded free jet, shock-cell structures appear and the gas experiences 
very rapid and strong expansions and compressions in the jet. In  such a case, the 
modifying factor fp will deviate significantly from unity. Then the parameter Y 
defined by (25)  may be applicable with acceptable validity only in the analysis of 
particle behaviour in the region upstream of the Mach disk. 

Particle streaklines in an opposing jet are shown in figure 15 for FP = 1.0, 2.0 and 
5.0 pm. All sizes of particles flow through interfacial region between the jet gas and 
the mainstream gas, a t  least under the present flow conditions. We can see that the 
particles are accelerated very smoothly in the expansion region of the jet. After the 
particles pass through the jet shock, they are decelerated by the compressed gas and 
also fluctuate significantly owing to the gas flow fluctuations near the contact 
surface. 

For small particles (F, = 1 .O and 2.0 pm), embedded particle-free regions appear as 
shown in figure 15. Moreover, we can find some interesting characteristics of the 
particle flow. The particles that enter the flow region between the jet shock and the 
contact surface are decelerated and then convected by the gas into the radial 
direction. Finally, they are pushed back in the mainstream direction opposite to the 
jet exhaust direction. Since the particle has much larger inertia than the gas 
molecule, i t  cannot completely follow the gas motion. The particle clouds, therefore, 
form a cocoon with some thickness which depends on the jet and the particle 
conditions. In the present calculations, this thickness of the cocoon wall becomes 
minimum for about pP = 2.0 pm. The outer radius of this cocoon becomes larger with 
increasing particle size and its structure depends on the particle radius. When the 
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FIGURE 15. Velocity vectors of particles along streaklines in an oppoeing jet, po = 5 atrn, 
p,,/pm = 20, To = Tm = 290 K,Mj = 1, Mm = 2, i7 = 5 cm, Ax = Ay = 0.1, F = 1 ,  n = 1500( +YOOO). 
The scaling length for Y is the nozzle diameter 2E. (a )  Fp = 5.0 prn, Y = 4.8; ( b )  vP = 2.0 prn, 
Y = 0.69; (c) FD = 1.0 pm, Y = 0.17. 



Numerical analysis of gasparticle two-phase flows 499 

particle size is large (rP = 5.0 pm), the particles injected at  points near the jet axis 
flow along the inner wall and those injected near the outer edge of the nozzle flow 
along the outer wall of the cocoon. This situation is reversed for particles with radius 
re = 1.0 pm. The result for F~ = 2.0 pm is intermediate between the above two. 

Particle trajectories depend significantly on the flow structure and fluctuations of 
the gas-phase flow. When the particles enter the fluctuating flow region of the gas, 
a t  first their velocities begin to follow the fluctuations relatively very slowly owing 
to their large inertia. Once their motions are perturbed, however, they travel through 
the gas flow field almost independently of each other, because the particle pressure 
is not present. Then the trajectories of two particle clouds, which were at first 
adjacent, can deviate appreciably during their travel through the gas flow field. This 
situation is appreciably enhanced if these two particle clouds enter different parts of 
the flow region. 

It will be very difficult to characterize the particle behaviour by one parameter 
such as Y defined previously, because every particle flows through a t  least several 
different parts of the flow field. For example, the values of this parameter described 
in figure 15 do not seem to give us any useful information about the particle 
cocooning. The thickness of the particle cocoon wall becomes minimum for Y = O( 1). 
It is, however, not clear that  this result is generally valid and the particle cocooning 
can be correlated with this parameter. More extensive numerical calculations will be 
necessary to clarify the existence of correlation of the particle cocooning with Y. 

The particle streaklines in the gas flow around a truncated cylinder are shown in 
figure 16. It is assumed that the particles that  impinge on the body surface are 
reflected perfectly elastically. As was discussed previously, the gas flow becomes 
substantially steady for large time step n. The streaklines shown in this figure can, 
therefore, be taken as the streamlines of the particles. 

The particles that pass through the bow shock are decelerated by the gas in the 
shock layer. I n  general, however, particles whose sizes are larger than some critical 
size cannot be decelerated completely in the shock layer and then impinge on the  
body surface with a finite velocity. 

I n  practical situations, the particles that impinge on the body surface will be 
reflected with finite velocities. The change in the mechanical and thermal properties 
of the impinged particles due to the collision with the body surface will depend on 
the physical conditions of the particles and the surface and also will depend on the 
velocities of the impinged particles. For simplicity, however, in the present analysis, 
only two extreme cases will be considered : perfectly elastic reflection and perfectly 
inelastic reflection. Furthermore, in the former case, i t  is assumed that only the 
velocity component normal to the body surface is reversed and the tangential 
component is unchanged (specular reflection). In the latter case, it is also assumed 
that the impinged particles stick to  or are absorbed by the body surface and the 
shape and size of the body are not affected by the impinged particles. 

For v --f 0, the gas flow is not affected by the presence of particles. Then the particle 
streamlines in the case of a perfectly inelastic reflection are the same as ofa  perfectly 
elastic reflection except for the streamlines of the reflected particles. 

As shown in figure 16, the particle steamlines in the shock layer strongly depend 
on the particle size. For F~ = 0.5 pm and 1.0 pm, the particles impinging on the body 
surface have very small velocity components normal to the body surface. Then the 
effect of the particle reflection is very small. It is important to  point out that  a very 
large concentration of particles appears near the shoulder of the body surface. With 
increasing particle size, the particles impinge on the body surface with larger normal 
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FIGURE 16. Velocity vectors of particles along streamlines in a supersonic flow around a truncated 
cylinder, p ,  = 0.1 atm, M ,  = 2, T, = 290 K, L = 5 cm, Ax = Ay = 0.02. The scaling length for Y 
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FIGURE 17. Streamlines of particles impinging on the body surface, p ,  = 0.5 atm, M ,  = 2, 
T, = 290 K, = 5 cm, F,, = 2 pm, Ax = Ay = 0.02, Y = 0.59. (a)  Particle streamlines for com- 
pletely elastic reflection from the body surface. (6) Intersecting region of particle streamlines. 

velocity components, and then the reflected particles travel upstream larger 
distances until they are decelerated by the gas flow and are again pushed back in the 
main flow direction. It is interesting that the particles impinging on the surface near 
the body axis experience a few collisions with the body surface, before they flow out 
of the shock layer in front of the body. The number of collisions that a particle 
experiences depends on the particle size and the first impinging location of the 
particle. 

In  every case, the particle-free region appears in the flow region between the 
outer side of the cylinder and the limiting particle streamline. At least theoretically, 
the extent of this region will become infinitely small in two limiting cases, where 
~ T ~ - + O  and rP+ co. In  the former, the particles will follow the gas flow almost 
completely, and in the latter, they are not affected by the gas flow appreciably. I n  
a certain intermediate case, the extent of the particle-free region becomes maximum 
under the fixed gas conditions and body size. 

For more detailed investigation of the particle streamlines in the case of the 
perfectly elastic reflection, streamlines of the particles that impinge on the body 
surface are shown in figure 17(a) for = 0.5 atm, M ,  = 2.0 and j~~ = 2.0 pm. 
Obviously these particles flow along very complicated streamlines. On the line AFG 
in figure 17 ( b ) ,  the particle concentration becomes infinitely large, and then the line 
FG would form a particle sheet in the flow field, if the loading ratio is not zero but 
finite. The hatched region in figure 17 ( b )  is the region where the intersections of the 
particle streamlines occur. 

It is important practically to investigate the collection factor E,  of a body 
suspended in a gas stream. This is defined as the square of ratio of the radial distance 
of the outermost streamline of particles in the uniform flow region that can impinge 
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FIQURE 18. Limiting particle streamline and collection factor. (a )  Limiting particle streamlines in 
a supersonic flow around a truncated cylinder, p, = 0.5 atm,  M, = 2, !T', = 290 K ,  L = 5 cm, 
Ax = Ay = 0.02, vD = 1 .O pm. ( b )  Collection factor of a truncated cylinder, M ,  = 2, T ,  = 290 K,  
L = 5 cm, Ax = Ay = 0.02. 

on the frontal surface of the body to the radius of the frontal surface. The limiting 
particle streamlines are demonstrated in figure 18. 

For a systematic analysis of the particle impaction on the body surface, sevcral 
impaction parameters have been proposed previously (Forney & McGregor 1987). 
These parameters are essentially derived from the paramet,er Y defined in (24) by 
suitable rescaling. When there is a shock wave in front of the body or the free stream 
is supersonic, the choice of appropriate scaling parameters is very difficult. For 
example, Forney & McGregor (1987) have proposed the impaction parameter 

Y =  Yr@, 

where L is the body radius and 2 is the shock stand-off distance. Here Yr is the 
impaction parameter for subsonic flow (M 5 0.4) of Israel & Rosner (1983), which is 
given by 

Yr=- "(")('z) 2 s cp, ["%, 
3 P  

(27) 

where Re, is the particle Reynolds number ( = 2rp pA@,/,ii, Aa, is the particle velocity 
relative to the gas) and GC is the collection factor due to departure from the 
continuum flow of the gas around a particle. 

The particle drag coefficient depends on three parameters: Re,, M, ( = Aa,/C) 
and T,/T. The particle Knudsen number K,, is related to Re, and M, through 
K,, = (+nCy)~M,/R,,. Then we can use the same procedure as Forney & McGregor 
(1987) to obtain the impaction parameter Y defined in (25)  by approximating 
T,/T = 1. The present results are plotted in figure 18(b), and compared with their 
theoretical results. the collection factor E, seems to be correlated fairly well with the 
impaction parameter Y. However, the present results deviate from the theoretical 
curve obtained by Forney & McGregor (1987) for !& < 0.8. This discrepancy is 
however quite natural, because in their analysis, a thin-walled cylinder pipe is used 
and the gas is injected into the pipe inlet where the body surface would be placed in 
our study. This difference is very important for the particles with smaller impaction 
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parameters Y,  The particles along the limiting particle streamline tend to follow very 
closely the gas flow near the body surface. The gas flow field in front of the thin- 
walled cylindrical probe for zero injection rate will not coincide with that in front of 
the truncated cylinder with a rigid surface. 

Forney & McGregor (1987) suggest that the impaction parameter Y should be 
useful in attempts to predict the particle impaction on a variety of shapes suspended 
in supersonic streams. Their collection factor E, is defined by (E, -J/( 1 -8, where f 
is the injection rate and E,  is the collection factor for f = 0, and numerical results are 
well correlated with the impaction parameter Y. According to the definition of EL, 
and their corresponding discussions, Ek should be correlated with this impaction 
parameter Y independent of the injection rate f. This will mean that the present plot 
of E,, which is given by E, for f = 0, against the impaction parameter !& should be 
close to their theoretical curve. Our results, ‘however, deviate from their curve for 
@ < 0.8. This fact suggests that  Forney & MeGregor’s conclusion should be 
modified. The present results demonstrate that the collection factor E,  changes 
with a very steep slope to zero near Y x 0.5. Here it must be noticed that the 
residence time becomes infinitely large for particles flowing along stagnation 
streamlines whose radii are less than some critical value. These particles cannot reach 
the body surface in a finite time. 

We turn now to a discussion of the effects of the gas viscosity on the collection 
factor E,, which was neglected in t,he present study. As the particles become 
small, those that enter into the shock layer near the body axis flow through the gas 
flow field very close to the body surface. In an actual viscous flow, these particles 
would be significantly affected by the boundary layer. Whether the boundary layer 
is laminar or turbulent will be decisively important for the collection factor E,  of 
these small particles. This problem remains for future study. 

4.3. Two-phase Jlow 

In the calculations of gas-particle flows, the loading ratio w is set to 0.3 for all flows. 
The numerical procedures are similar to those in the previous section. The one-phase 
results a t  the final time steps n in figures 5, 9 and 12(a) are used as the initial flow 
conditions. The particle clouds are injected into a gas flow successively a t  every time 
step n after initiation of the two-phase calculation. The properties of the particles 
in each cloud are set to those of the gas a t  the injected point. Since the gas and 
the particle phases interact with each other, both phases are always solved 
simultaneously. 

A t  each step, the time interval At is first determined by the CFL condition for the 
gas-phase flow. This time interval At is used for the particle phase analysis, too. 

The injection points of the clouds are distributed uniformly on the injection plane. 
The number of.particles per unit depth of a cloud injected a t  y = y:k is given by 

NEk = p*lu*l AYE, At, (28) 

where the asterisk denotes the flow conditions a t  the injection point of the cloud and 
Ay;t;C is the radial width of its cross-section. Note that the relation np* = p* has been 
used in (28). Obviously 

Y , * ~  = 0.5A~p*~, * * - A  * 
Y p ( k + l ) - Y p k  - Y p k ?  

1 for jet flows, 
zAy% = (R ( = 2.5) f or a flow around a truncated cylinder, 
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must be satisfied, where R is the half-height of the computational domain. Here it 
must be remembered that q k  is a function of the computational time t ,  because the 
time interval At determined by the CFL condition depends on the temporal flow 
conditions. 

The number of clouds injected into a. flow a t  each time step is always set to a 
constant. This number is denoted by K and is shown in the following figures. Since 
Ay:k is chosen to be constant for all k, we can obtain Ay:k from 1/K for jet flows and 
from R / K  for a flow around a truncated cylinder. In  all cases, this Ay;k is chosen so 
small that the condition AyZk < A y  is well satisfied. It is also automatically satisfied 
that Iu*l At is much smaller than the mesh size Ax. Then ASEk = Ay;rkl u*lAt is 
sufficiently small compared with the averaging area S ,  = Ax by. 

In  the present analysis, it is implicitly assumed that A8,, a t  a time t or a time step 
n is always much smaller than S,. This can be checked only after the numerical 
results are obtained. As will be shown later, in the actual calculations, it is not easy 
to check whether this condition is completely satisfied for all particle clouds, when 
the flow field is unsteady, This is because local disintegration of a global particle 
cloud can occur owing to  rapid changes of the gas flow field. In such a case, some 
isolated particle subclouds and also embedded dust-free regions may reasonably be 
expected to appear in the flow field. 

A sonic jet of a gas-particle mixture expanded into a stagnant gas is shown in 
figure 4 for +=p = 1.0 pm. By comparing the results with the corresponding dust-fret: 
ones, several important features of the gas-particle jet can be found. First, the 
spreading region of the dusty jet is much enlarged in the radial direction. The 
location of the Mach disk is shifted downstream and the strengths of the barrel shock 
and the Mach disk are reduced. The subsonic flow region surrounded by the jet 
boundary and the slip line downstream of the Mach disk becomes appreciably less 
spatially periodic. Furthermore, the fluctuating motion of the jet core downstream 
of the Mach disk, which is only subsonic in the jet, is effectively suppressed (see figure 

In the expansion region surrounded by the barrel shocks upstream of the Mach 
disk of the dust-free jet, the gas is accelerated and its temperature decreases rapidly 
with increasing axial distance. In  the dusty jet, interactions between the gas and the 
particle phases tend to suppress the increase in gas velocity and the decrease in gas 
temperature. Then the Mach number of the gas is increased less effectively than in 
the dust-free jet. The maximum Mach number attained in thc present dusty jet, is 
nearly two-thirds of that in the corresponding dust-free jet. Hence the strength of 
the Mach disk is decreased. 

The time history of the density profile along the jet axis is shown in figure 19. After 
initiation of the particle injection into thc flow field, the location of the Mach disk is 
shifted downstream. The small-scale density fluctuations in the region downstream 
of the Mach disk diminish with increasing time step n. For n greater than about 
2000( + 6000), the flow field downstream of the Mach disk is slightly oscillatory with 
time, and the relaxation region behind the Mach disk can be clearly observed. 

The locations of centres of the particle clouds in the jet shown in figure 4 arc given 
in figure 20. As far as the particle behaviour is concerned, any essential difference 
between the results for v j  = 0 and 0.3 cannot be found. Merely the scale of the 
fluctuation of streaklines is decreased with the increasing loading ratio. Particle 
streaklines are very smooth except in the subsonic region surrounded by the Mach 
disk and the slip lines. An extremely high concentration of particles is realized near 
the jet boundary. Fluctuation of the particle streaklines is appreciable in the subsonic 

19). 
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FIGURE 19. Time history of density profile along the jet axis of the 
two-phase jet shown in figure 4. 
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FIGURE 21. Time history of density profile along the jet axis of the 
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X 

F L M  203 



508 R. Ishii. Y .  Umeda and M .  Yuhi 

I \ 
- 

I 
1 
I 

i 

X 1 Jet shock 

FIGURE 22. Locations of particle clouds in the jet shown in figure 8, Y = 0.17. 

region downstream of the Mach disk even in the dusty jet. This fluctuation is clearly 
most prominent near the slip line. 

A numerical result for a dusty opposing jet is shown in figure 8. As in the sonic jet 
expanded into a stagnant gas, the jet-shock distance from the nozzle exit plane is 
appreciably enlarged. This in turn results in a shift  of the locations of the contact 
surface and the bow shock towards the jet exhaust direction. It is interesting that the 
shape of the bow shock differs slightly from that in the one-phase jet. Then the flow 
field in the region between the contact surface and the bow shock in the two-phase 
jet is similar to that in the one-phase jet. 

One of the most important effects of the presence of particles is seen in the 
instability of the contact surface. This situation is well demonstrated in the time 
history of the density profile along the jet axis shown in figure 21. The location of 
the contact surface and the distance between the bow shock and the contact surface 
on the jet axis change more drastically than in the one-phase jet. In general, the 
presence of particles tends to suppress the flow instabilities which would appear in 
the corresponding one-phase flow. Thus the enhancement of instability of the contact 
surface found in the present result is an interesting example whcre the presence of 
particles tends to reinforce the instability. In the one-phase jet, the contact surface 
near the axis protrudes toward the bow shock. This situation is reversed in the 
two-phase result. This phenomenon itself is, however, not an essential difference 
between the one- and the two-phase jets. As is shown in the time history of the 
density profile along the jet axis (figures 9 and 21), the location of the contact surface 
depends on the time step n. The concave or the convex shape of the contact surface 
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near the jet axis appears almost periodically with time both in the one- and the two- 
phase jets. 

The dusty region in the opposing jet is shown in figure 22. Compared with the 
results for vj = 0, the particles travel larger distances in the flow field both in the 
axial and the radial directions. The radius of the outer wall of the particle cocoon 
becomes large and its behaviour becomes very complicated in the two-phase jet. 

A supersonic two-phase flow around a truncated cylinder is shown in figure 11, 
where the particles impinging on the body surface are assumed to stick to or to be 
absorbed by the surface. As was discussed previously, if the particles that impinge 
on the body surface are reflected elastically, a particle sheet will appear in the flow 
field where the particle density pp becomes infinitely large (see figure 17). In  such a 
case, the assumption that the volume occupied by the particles is negligible will 
become invalid. Moreover, for small sizes of particles, a very large particle 
concentration will also be realized near the shoulder of the body surface (see figure 
16). Thus the present calculation has been carried out for particles with radius 
vP = 2.0 pm under the condition that the particles impinging on the body surface 
are absorbed by the body surface. 

Numerically, a large numer of particle clouds must be considered, because the 
radius of the computational domain R is set to 2.5 ( R  = 2.5L). This means that a 
large computer memory and also a large computing time are required in order to get 
a reliable numerical solution. Although the mesh size Ax( = Ay) was chosen as 0.05, 
the amount of computation increased to a significant degree. The VP ratio in our 
computer program is approximately 0.96. In spite of this, one run required more than 
four hours on the VP-400 supercomputer. 

The two-phase solution for pP = 2.0 pm is shown in figure 11. In this case the one- 
phase solution was calculated for 1 5 n 5 4000 and the particles were injected into 
the one-phase solution for n 2 4001. In order to investigate in detail the time 
evolution of the shock layer, a space-time diagram of the density distribution along 
the axis is shown in figure 12( b ) .  As was mentioned above, the flow is dust-free for 
1 5 n 5 4000 and dusty for 4001 5 n 5 8000. The dust-free result shows that the 
calculated flow field is slightly oscillatory with time and substantially steady for 
n > 2000. After the initiation of particle injection, the shock stand-off distance begins 
to decrease, and for n > 1000( +4000) the density field in the shock layer becomes 
somewhat oscillatory with time. The amplitude of this oscillation is largest just 
behind the shock front. I n  spite of the oscillatory fluctuation of the density profile 
in the shock layer, the location of the bow shock is quite stationary and also the 
density profile near the body surface is almost steady for n > 2000( +4000). 

The discrete treatment of the particle-phase flow will perhaps be responsible for 
the oscillatory fluctuation of the density distribution. The number of clouds 
contained in each cell will not be constant with time even for large n. This will in turn 
produce some time change in the flow properties behind the shock front and then 
oscillatory fluctuations in the shock layer. Such fluctuations can, however, be almost 
suppressed before they reach the body surface, because the particle density becomes 
very large near the body surface and these particles can effectively absorb the 
disturbances. As is shown in figure 12 ( b ) ,  the amplitude of the density oscillation in 
the shock layer is much smaller than the total increase in density due to the presence 
of particles. Then the present result is sufficient to draw quantitative as well as 
qualitative conclusions about the effects of the presence of particles on the flow field. 

As is shown in figure 11 ( c ) ,  the contours of constant Mach number of the two-phase 
flow are very similar to those of the one-phase flow. However, comparing the results 

17-2 
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FIGURE 23. Axial distributions of gas and particle properties in the supersonic flows around a 
truncated cylinder shown in figure 1 1  ; (a) distributions of the gas and the particle temperatures ; 
(b) distributions of the gas and the particle velocities. 

with the dust-free ones, we find that the contours of constant density and pressure 
are very different from those of the one-phase flow. 

In figure 23, distributions of the temperatures and the velocities of both the phases 
along the axis are shown. Some of the qualitative features of the two-phase flow are 
very similar to those obtained by Sugiyama (1983). The present results, however, 
show more complicated flow behaviour than his results. The shock stand-off distance 
of the two-phase flow is about 20% smaller than for the one-phase flow. 

It should be noted that the shock wave obtained numerically by the finite- 
difference scheme using the Euler equations always has some finite thickness which 
is not the physical one. The particles begin to follow the change of the gas properties 
in this region, which leads t o  the fact that  the gas properties just behind the shock 
front obtained numerically in the two-phase solution cannot exactly agree with the 
theoretical values, which are determined by the Rankine-Hugoniot relations under 
the assumption of a frozen shock front (see figure 23). 

In the dusty shock layer, the gas temperature becomes highest at some point near 
the shock front. In  the one-phase flow, the highest gas temperature is realized on 
the body surface. After the particles pass through the shock wave, the magnitude of 
the particle velocities decreases almost linearly along the axis and impinge on the 
body surface with some finite value. 

In order to investigate the flow field of the particle phase, locations of the particle 
clouds are shown in figure 24. A dust-free region appears between the limiting 
particle streamline and the outer wall of the cylinder. In figure 18(a), the limiting 
particle streamline in the present two-phase flow is shown by a dashed line. 
Obviously, the effect of the presence of particles on the location of the limiting 
particle streamline is small. The collection parameter E, and the impact parameter 
Y are 0.64 and 0.40, respectively. Although E,  is not affected appreciably by the 
particle loading ratio v, Y depends on it rather strongly. 
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X 

FIGURE 24. Locations of particle clouds in the flow shown in figure 1 1 .  

Since the present mesh is not aligned with the bow shock, some artificial 
disturbances are produced at the mesh interfaces on the bow shock (see figure 11). 
These disturbances affect the particle behaviour in the shock layer, which is 
responsible for a wavy pattern of the spatial distribution of the particle clouds near 
the limiting particle streamline. Moreover, because of the oscillatory motion of the 
flow field behind the bow shock, as was discussed previously, the particle streaklines 
in front of the body surface fluctuate a little. 

Owing to the presence of the limiting streamline, characteristics of the two-phase 
flow in the dust-free region are appreciably different from those of the one-phase flow 
in the corresponding flow region. This can be recognized by comparing the one- and 
two-phase results in figure 11. 

Finally, it is worth discussing the non-dimensional parameters characterizing the 
two-phase flows ( v  > 0). Since the two phases interact with each other, the flow field 
becomes much more complicated than the dust-free flow. The strength of the 
interaction can mainly be measured by the mass loading ratio v. Moreover, the 
energy transfer between the two phases introduces an additional parameter 
8 = CpD/Cpg.  Thus the non-dimensional parameters for the two-phase flows are <, 
c, fp, gp, v and 8 in addition to the Mach number, the pressure ratio and possibly 
the density ratio of the gas-phase flow. These seem too many to expect that one or 
even a combination of a few universal parameters can characterize successfully the 
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two-phase flows. However, making effort to find these universal parameters will be 
very important a t  least from the engineering point of view. For th i s  purpose, morc 
detailed sample calculations will be necessary. 

5. Conclusions 
Sonic jets expanded into a stagnant gas, sonic jets opposing a supersonic main flow 

and supersonic flows of gas-particle mixtures around a truncated cylinder were 
calculated numerically by a time-dependent technique. The effects of the presence of 
the particles on the flow field were investigated in detail by comparing these results 
with the corresponding dust-free ones. Also, motions of dust particles in the gas flows 
were studied. It was confirmed that the particle motions become considerably 
complicated when strong discontinuities such as shock waves and slip lines and also 
a body surface are present in the flow field. In  particular this situation is appreciably 
enhanced when the flow is not stationary. Disintegration of a large particle cloud 
because of some rapid change of the flow field may sometimes result in the production 
of small subclouds. Moreover, in some other situations, these particle subclouds 
coalesce or intcrsect to form multivalue regions of the particle propcrties. 

A few of the universal parameters proposed previously, which characterize the 
particle motions in gas flows, were applied to  the present study. Only in some simple 
situations were these successfully applied to correlate the particle motions. In 
general, however, it was almost impossible to correlate the particle behaviour with 
these parameters. This is because many strong discontinuities appear in the 
supersonic gas-phase flow. Then the gas conditions around the particles change very 
drastically during their passage through the gas flow field. Obviously some 
combinations of the parameters will be necessary to characterize the particle flow 
field, especially for two-phase flows with finite loading ratio. 

Appendix. Piecewise-linear interpolation method 
The piecewise-linear interpolation method (PLM) scheme is essentially a second- 

order sequel to Godunov’s algorithm originally developed by Collella & Glaz (1983) 
and van Leer (1979), and has second-order accuracy in space and time. Since the 
governing equations (13) are first split into two sets of one-dimensional differential 
equations as in (18), it will be sufficient to describe this Riemann solver for a set of 
one-dimensional differential equations, here (18a) .  This is rewritten for simplicity in 
the form 

(A 1) 
aU aF 
- + - + H =  0 ( H =  W,+H,,), 
at ax 

which can also be rearranged into a different set, 

aQ aQ -+A-+C = 0, 
at ax 

av av 
at ax . -+=-= 0 

Here Q is a state vector defined by Q = (p ,  u, p)’ and A is a matrix defined by aF’/aQ, 
where F’ = (p,pu, and e’ = p / [ y ( y -  l ) ]  +ipu*. The state vector C is obtained in 
the transformation from (A 1 )  to (A 2) and (A 3). 

Obviously the momentum equation in the y-direction, (A 3), is decoupled from the 
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FIGURE 25. Scheme for the piecewise-linear interpolation method. 

other equations and then the velocity component v can be determined independently 
after the set of equations (A 2) are solved. Then the problem is substantially reduced 
to the solution of a one-dimensional flow problem. I n  PLM, both forms of equations 
(A 1) and (A 2) and (A 3) are used in a unit process. 

Referring to figure 25, grid points on a line parallel to the x-axis are designated by 
xi (j = 1 , 2 , 3 , .  . . ). The boundary between the .jth and the (j+ 11th zones is denoted 
by xi+; and the mesh size is defined by Axj = xj+;-xfi-;. Since a uniform size of 
mesh is employed in the present analysis, we can put Axj = Ax = const. We assume 
that a t  time tn  we know Uj. and wish to calculate U;+', the approximate solution a t  
time P+'. The present second-order Godunov algorithm for doing so consists of the 
following four steps : 

( i )  The interpolated profiles for the primitive variables Qn subject to t,he 
monotonicity constraints are obtained by 

Here AQi is defined with appropriate monotonicity constraints, for example, as 

AQ, = sgn (DQ) min (2lDQ+l, 2lDQ-1, IDQlL (A 5 )  

DQ+ = Qj.+l-Q;, DQ- = QY-Q;-l, DQ = i(DQ++DQ-). (A 6 )  

where 

( i i )  The time-ce,ntred left and right stsates Qy$l and Qy$l 
xj+; are constructed approximately as 

at the cell boundary 

I Q;$IL = Q L + P > ( Q ; - Q L ) + P ,  1---A. LAQj -P,(iAtCj), [( ;: 1 
At 

QT# I R = QR + P, (Q;+i - Qd - P< [ (1 + z-Aj+i) t AQi,,] - P< (Wcj+i) > (A 7 )  

P> w =  c (f? w)r,*, P, w =  c (f;+lw)$+l> 
A * > O  A.10 
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where A*(A+ = u+c, Ao = u, A- = u - c )  are the characteristic values of the matrix A, 
Pr and r* are the corresponding normalized left and right eigenvectors, respectively, 
and QL and QR are given by 

Q L =  Q;+[l- max (A;,O)%]$AQ,, \ 
(see figure 25). In this step, governing equations in the form (A 2) are used. 

(iii) The Riemann problem at the boundary xi+; with the left and right states of 
Q obtained in step (ii) are solved to obtain Q:#. In  the present study, the Riemann 
problem is solved numerically by an iterative method proposed by Chorin (1976). 

(iv) Equation (A 1) is used to get U?+’ as 

(A 9) 
At 
Ax 

UF+’ = UT +-(F’-;-F’+;) -$At(Hj-;+Hj+;), 

where F,+; = F( U(Qy$)) and H,+; = H( U(Q;$), U;,+&). 

In all these steps, the particle quantities formally designated by UFA are assumed 
to be known and fixed. 

This scheme is the so-called second-order upwind scheme and so is numerically 
very robust in the analysis of supersonic flows with strong discontinuities such as 
shock waves and slip lines. 
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